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Abstract: A unified approach to unambiguous synthesis of the phosphatidylinositol-3-
phosphates involved in intracellular signalling is illustrated by the synthesis of 1D-1-
(17,2 ’-dihexadecanoyl-sn-glycero-3 “-phospho)-myo-inositol-3,4,5-trisphosphate.
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The 3-phosphate derivatives of 1D-1-(1°,2°-di-O-fattyacyl-sn-glycero-3 “-phospho)-myo-inositols
(PtdIns) including phosphatidylinositol-3-phosphate, PtdIns(3)P, and the bis- and tris-phosphate derivatives
PtdIns(3,4)P, and PtdIns(3,4,5)P;, have been found in eukaryotic cells, and the occurrence of PtdIns(3,5)P,
has been suggested.!? These compounds have been demonstrated as activators of protein kinase C
isoforms &, €, and n, and are putative messengers in cellular signal cascades pertinent to inflammation,
cell proliferation, transformation, protein kinesis, and cytoskeletal assembly.* Minute quantities are found
in cells and therefore synthetic methods are needed to obtain samples for establishing the putative roles.’?

Continuing our studies on the synthesis and RCOO—CH,
functions of the cellular phosphoinositides,® we
report on a unified approach which is suitable
for facile synthesis of all cellular Ptdins-3- No M

RCOOM-CH

N0
phosphates, provides unambiguous structural and Fl’é
stereochemical control in the myo-inositol as R o
well as the sn-glycerol moieties, and is (OH)z(O)PO\%’ORI

m'

applicable for both short and long  chain
fattyacyl types required for cytophysiological
studies. We illustrate by the synthesis of 1D-
(1°,2’-dihexadecanoyl-sn-glycero-3 “-phospho)-
myo-inositol-3,4,5-trisphosphate (+)-12.

RCO: Fattyacyl®

Ptdins(3)P: R' = R* =

PtdIns(3,4)P,; R' = P(O)YOH),, R* = H
PtdIns(3,5)P,;; R' = H, R* = P(O}OH),
PtdIns(3,4,5)P,;; R' = R* = P(O)(OH),

The approach has several novel features. One, it uses 1D-1,2:4,5-di-O-cyclohexylidene-3-O-allyl-myo-
inositol (-)-1” as purposely designed starting material’ and 1D-1,2-O-cyclohexylidene-3-0-allyl-6-O-benzyl-
myo-inositol (+)-3 as the key myo-inositol synthon. Two, it incorporates strategic O-protection by and
sequentially invariant removal of allyl, 4-methoxybenzyl, and benzyl protecting groups from the inositol
hydroxyls destined to appear in the target structures as phosphate, phosphatidyl, and free hydroxyl
respectively.  Three, it employs preformed 1,2-di-O-fattyacyl-sn-glycero-3-phosphoric acid (sn-3-
phosphatidic acid) as the lipid synthon for coupling to appropriately O-protected myo-inositol by a
phosphodiester condensation.
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Reaction of (-)-17 with excess BnBr/NaH in DMF at R.T. overnight gave in quantitative yield its 6-O-
benzyl derivative (-)-2 [a], -51.6° (c 1.1, CHCl;). Transketalization under kinetic control by reaction of
(-)-2 with ethylene glycol (1.2 mole)/catalytic p-TSA in CH,Cl, at R.T. for 3 hr. gave the key synthon
(+)-3, yield 81%, [a], +26.2° (¢ 1.0, CHCl,).> Reaction of (+)-3 in DMF at R.T. for 8 hr. with 1.2
moles of allyl bromide and NaH yielded the complete set of intermediates required for all four known
PtdIns-3-phosphates. By chromatography on silica, the following pure compounds were obtained (Scheme
1): in28% yield, 1D-1,2-O-cyclohexylidene-3,4,5-tri-O-allyl-6-O-benzyl-myo-inositol (-)-(4) [a], -11.3°
(c 1.0, CHCly), Lit. [a], -9.2°% (c 1.5, CHC13)9; in 26% yield, 1D-1,2-O-cyclohexylidene-3,4-di-O-allyl-
6-O-benzyl-myo-inositol (+)-(4a)"° [a], +11.6° (c 0.82, CHCL); in 24% yield, 1D-1,2-O-
cyclohexylidene-3,5-di-O-allyl-6-O-benzyl-myo-inositol (-)-(4b)° [a], -13.5° (¢ 0.96, CHCL,); and, in
22% yield, unchanged starting material (+)-3. The overall utilization of (+)-3 is 90% considering that
the recovered compound is converted into (-)-de in the next step (complete benzylation). Alternatively,
reaction of (+)-3 as above but using an excess of allyl bromide/NaH yielded (-)-(4) in quantitative yield.
Compounds (+)-4a, (~)-4b, and (+)-3 each were treated with an excess of BnBr and NaH in DMF at R.T.
for 16 hr. and gave quantitative yields of the fully O-protected myo-inositols (-)-d¢ [a], -5.6° (c 1.43,
CHCly), (-)-4d [a], -21.3° (¢ 1.23, CHC),), and (-)-de [a], -25.3° (c 2.0, CHCL,).

S . .

[¢]
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Ayl O > 0 Ay O oR!
zj : R' = Bn, R? = Allyl

1: R=H 2: R=Bn : Rl = R’ =Bn

Compounds (-)-4, (-)-4c, (-)-4d, and (-)-de are intermediates respectively for the synthesis of
PtdIns(3,4,5)P,, PtdIns(3,4)P,, PtdIns(3,5)P,, and PtdIns(3)P, by the sequence of reactions illustrated for
PtdIns(3,4,5)P, (Scheme 2). On heating at 95 °C for 3 hr. with acetic acid-water (80:20), (-)-4 lost the O-
cyclohexylidene protection and gave the 1,2-diol (-)-5 [a], -16.2° (¢ 1.0, CHCL), Lit. [a], -10° (c 2,
CI-ICI,).9 Reaction of (-)-§ with Bu,SnO in toluene with azeotropic removal of H,0, rotary evaporation,
solvent change to DMF and treatment with 4-methoxybenzyl chloride at 50 °C for 8 hr. provided high
selectivity for reaction at the equatorial 1-OH over axial 2-OH (91:9) and gave after chromatography on
silica (+)-6 [a], +6.8° (c 1.0, CHCL)."" On treatment with excess BnBr/NaH in DMF at R.T. for 16
hr., (+)-6 produced 1D-1-O-(4 -methoxybenzyl)-3,4,5-0-tri-O-allyl-2,6-di-O-benzyl-myo-inositol (-)-7
fa], -8.0° (c 1.0, CHCl,). Compound (-)-7 incorporates 3 types of blocking groups arranged for selective
and successive deblocking and liberation of hydroxyls, from O-allyls for dibenzylphos-phorylation, from the
1-0-(4 "-methoxybenzyl) for phosphatidylation, and the O-benzyls to regenerate the free hydroxyls in the
target structure. Reaction of (-)-7 with 10% Pd-C in methanol-acetic acid-water (98:2:0.1) under reflux
caused complete O-deallylation to yield (-)-8 [a], -7.5° (¢ 1.0, CHC],). Reaction of (-)-8 in DMF with
NaH and tetrabenzyl pyrophosphate'? produced the 3,4,5-tris-O-(dibenzyl phosphate) derivative (-)-9 [a],
-9.5° (c 2.9, CHCL;). The treatment of (-)-9 with DDQ in CH,Cl, yielded the 1D-2,6-O-dibenzyl-myo-
inositol 3,4,5-tris-(dibenzylphosphate) (-)-10 [a], -6.5° (¢ 0.2, CHC13).3‘ Reaction of (-)-10 with 1,2-
dihexadecanoyl-sn-glycero-3-phosphoric acid' (13) in anhydrous pyridine and triisopropyl-benzenesulfonyl
chloride as condensing agent'* at R.T. for 18 hr. gave the phosphodiester product 1D-(17,2°-
dihexadecanoyl-sn-glycero-3 *-phospho)-myo-inositol-3,4,5-tris-(dibenzylphosphate) (+)-11 [a], +4.0° (c
0.3, CHCl,). Hydrogenolysis of (+)-11 in ethanol using Pd-black and H, gas at 45 psi yielded 1D-(17,2°-
dihexadecanoyl-sn-glycero-3 “-phospho)-myo-inositol-3,4,5-trisphosphate, PtdIns(3,4,5)P;, (+)-12 [a],
+5.8° (¢ 0.2, CHCL,-MeOH-H,0, 2:1:0.1), Lit. [a], +3.7 (c 0.5, CHCL).*

R'=R*=H

R' = R? = Aliyt

: Rl = Allyl, R®* = H
R' = H, R* = Allyl
: R' = Allyl, R® = Bn
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Our choice of preformed sn-3-phosphatidic acid as the lipid synthon merits special comment. It contrasts
with the related syntheses which all utilize sn-1,2-diacylglycerol in tetrazole-catalyzed reaction with
(benzyloxy)bis(N, N-diisopropylamino)-phosphine, BhOP(NCH(CH),),, or related phosphoramidite.® The
use of sn-3-phosphatidic acid prepared from natural sn-glycero—i«l-phosphocholine13 avoids problems endemic
to the chemistry of 1,2-diacylglycerol. The latter isomerize readily via neighboring O-acyl migration to
equilibrium mixtures comprising the 1,2-, 1,3- and 2,3-diacy1g1ycerols,ls and indeed 1,3-dihexadecanoyl-
glycerol is detected by TLC in the tetrazole-catalyzed reaction of sn-1,2-dihexadecanoylglycerol with
BuOP(NCH(CH,),),."® This equilibration is tantamount to racemization which is virtually complete for
the reaction of sn-1,2-dihexanoylglycerol.'® Such propensity for racemization is absent from sn-3-
phosphatidic acids. This is critically important for synthesis of PtdIns-3-phosphates with hexanoyl or shorter
chain acyls. In contrast with the long chain acyl derivatives which are self-aggregating in water, the short
chain analogues are expected to form monomeric solutions and are considered advantageous as biochemical
probes.®** The absolute configuration of sn-3-phosphatidic acids is well established,' and that of our key
myo-inositol synthons is derived unequivocally based on their preparation from (-)-1.7 The one-step
esterification of the sn-3-phosphatidic acid and the myo-inositol synthon is stereochemically innocuous. Thus,
our approach ensures that the structural and stereochemical integrity of the lipid and the myo-inositol
synthons is conveyed faithfully and unambiguously to the target phosphatidylinositol—B-phosphates.l7
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(+)-3, '"H-NMR (300 MHz, CDCl,): é ppm 1.54-1.71 (br m, 10 H, cyclohex-), 2.7 (br, 2H, OH),
3.38 (yt, J 9.6 Hz, 1H, H-5), 3.41-3.56 (m, 2H, H-3 & H-6) , 3.89 (yt, J 9.4 Hz, 1H, H-4),
4.01-4.15 (m, 1H, H-1), 4.16-4.28 (m, 2H, CH,-C=), 4.38 (dd, J 4.2, 4.2 Hz, 1H, H-2), 4.81
(q, 2H, J 11.4 & 91.8, Phenyl-CH,), 5.19-5.34 (m, 2H, CH,=C), 5.89-6.03 (m, 1H, -CH=C),
7.24-7.38 (m, 5H, C¢Hy). In diacetate of (-)-3, 3.89 H-4, 3.38 H-5 signals shift to 5.30 and 4.99.
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OH), 3.44 (yt, J 9.5 Hz, 1H, H-5), 3.56-3.68 (m, 2H, H-3 and H-6) , 4.12 (yt, J 5.9 Hz, 1H,
H-4), 4.17-4.21 (m, 1H, H-1), 4.17-4.32 (m, 4H, 2 CH,-C=), 4.35 (dd, J 4.2, 4.2 Hz, 1H, H-2),
4.80 (q, 2H, J 12.0 and 57.0, Phenyl-CH,), 5.13-5.32 (m, 4H, 2 CH,=C), 5.85-5.97 (m, 2H, -2
CH=C), 7.18-7.38 (m, 5H, C¢H;). In the monoacetate of (+)-4a, the 3.44 H-5 signal shifts
downfield to 4.93. The "H-NMR of (-)-4c, the O-benzyl derivative of (+)-4a, was identical with
the spectrum of DL-4c prepared by complete benzylation, selective removal of 3,4-O-
cyclohexylidene, and complete allylation from DL-1,2:3,4-di-O-cyclohexylidene-myo-inositol
(Garegg, P.J; Iversen, T.; Johansson, R.; Lindberg, B. Carbohydr. Res. 1984, 130, 322-326)].
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(m, 4H, 2 CH,=C), 5.87-5.98 (m, 2H, 2 -CH=C), 7.23-7.38 (m, 5H, C,H,). In the monoacetate
of (-)-4b, 3.93 H-4 signal is shifted downfield to 5.33 and the latter shows spin connectivity to
3.28 H-5 and 3.58 H-3 signals observed by selective irradiation at 5.58 and 'H COSY (500 MHz).
(+)-6 'H-NMR (300 MHz, CDCL): § ppm 2.54 (br, 1H, OH), 3.05 (dd, J 2.4 and 10.0 Hz, 1H,
H-1), 3.13-3.23 (m, 2H, H-3 and H-6), 3.23-3.77 (m, 1H, H-5), 3.73 (s, 3H, OCH,), 3.87 (#t,
J 10.1 Hz, 1H, H-4), 3.97-3.99 (m, 1H, H-2), 4.20-4.28 (m, 6H, 3 CH,-C=), 4.43-4.80 (m, 4H,
2 Phenyl-CH,), 5.05-5.25 (m, 6H, 3 CH,=C), 5.77-5.95 (m, 3H, 3 -CH=C), 6.75-6.79 (m, 2H,
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